INTEGRATION

ν $y = \frac{1}{2}$

The diagram shows the curve with equation $y = \frac{1}{x}$, x > 0.

The shaded region is bounded by the curve, the lines x = 3 and y = 3 and the coordinate axes.

- **a** Show that the area of the shaded region is $1 + \ln 9$.
- **b** Find the volume of the solid generated when the shaded region is rotated through 360° about the x-axis, giving your answer in terms of π . (5)
- 2 Given that

$$I = \int_{0}^{4} x \sec\left(\frac{1}{3}x\right) \, \mathrm{d}x,$$

- **a** find estimates for the value of I to 3 significant figures using the trapezium rule with
 - i 2 strips,
 - ii 4 strips,

iii 8 strips. (6) **b** Making your reasoning clear, suggest a value for *I* correct to 3 significant figures.

3 The temperature in a room is 10°C. A heater is used to raise the temperature in the room to 25°C and then turned off. The amount by which the temperature in the room exceeds 10°C is θ °C, at time t minutes after the heater is turned off.

It is assumed that the rate at which θ decreases is proportional to θ .

a By forming and solving a suitable differential equation, show that

$$\theta = 15e^{-kt}$$
,

where *k* is a positive constant. (6)

Given that after half an hour the temperature in the room is 20°C,

(3)

(5)

(2)

The heater is set to turn on again if the temperature in the room falls to 15°C.

- c Find how long it takes before the heater is turned on. (3)
- 4 **a** Find the values of the constants p, q and r such that

$$\sin^4 x \equiv p + q \cos 2x + r \cos 4x. \tag{4}$$

b Hence, evaluate

b find the value of k.

$$\int_0^{\frac{\pi}{2}} \sin^4 x \, \mathrm{d}x,$$

giving your answer in terms of π .

(4)

INTEGRATION

continued

5 a Find the general solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy^3. \tag{4}$$

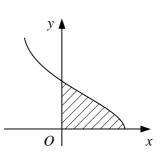
- **b** Given also that $y = \frac{1}{2}$ when x = 1, find the particular solution of the differential equation, giving your answer in the form $y^2 = f(x)$. (3)
- **6 a** Show that, using the substitution $x = e^{u}$,

$$\int \frac{2+\ln x}{x^2} \, \mathrm{d}x = \int (2+u) \mathrm{e}^{-u} \, \mathrm{d}u.$$
 (3)

b Hence, or otherwise, evaluate

$$\int_{1}^{e} \frac{2 + \ln x}{x^2} \, \mathrm{d}x. \tag{6}$$

8



The diagram shows the curve with parametric equations

 $x = \cos 2t$, $y = \tan t$, $0 \le t < \frac{\pi}{2}$.

The shaded region is bounded by the curve and the coordinate axes.

a Show that the area of the shaded region is given by

$$\int_{0}^{\frac{4}{4}} 4\sin^2 t \, \mathrm{d}t. \tag{4}$$

- **b** Hence find the area of the shaded region, giving your answer in terms of π . (4)
- c Write down expressions in terms of cos 2A for
 - i $\sin^2 A$,
 - ii $\cos^2 A$,

and hence find a cartesian equation for the curve in the form $y^2 = f(x)$. (4)

$$f(x) \equiv \frac{6 - 2x^2}{(x+1)^2 (x+3)^2}$$

a Find the values of the constants A, B and C such that

$$f(x) \equiv \frac{A}{(x+1)^2} + \frac{B}{x+1} + \frac{C}{x+3}.$$
 (4)

The curve y = f(x) crosses the *y*-axis at the point *P*.

b Show that the tangent to the curve at *P* has the equation

$$14x + 3y = 6.$$
 (5)

c Evaluate

$$\int_0^1 f(x) \, \mathrm{d}x,$$

giving your answer in the form $a + b \ln 2 + c \ln 3$ where a, b and c are integers. (5)

© Solomon Press