INTEGRATION

1

The diagram shows the curve with equation $y=\frac{1}{x}, x>0$.
The shaded region is bounded by the curve, the lines $x=3$ and $y=3$ and the coordinate axes.
a Show that the area of the shaded region is $1+\ln 9$.
b Find the volume of the solid generated when the shaded region is rotated through 360° about the x-axis, giving your answer in terms of π.

2 Given that

$$
I=\int_{0}^{4} x \sec \left(\frac{1}{3} x\right) \mathrm{d} x
$$

a find estimates for the value of I to 3 significant figures using the trapezium rule with
i 2 strips,
ii 4 strips,
iii 8 strips.
b Making your reasoning clear, suggest a value for I correct to 3 significant figures.
3 The temperature in a room is $10^{\circ} \mathrm{C}$. A heater is used to raise the temperature in the room to $25^{\circ} \mathrm{C}$ and then turned off. The amount by which the temperature in the room exceeds $10^{\circ} \mathrm{C}$ is $\theta^{\circ} \mathrm{C}$, at time t minutes after the heater is turned off.
It is assumed that the rate at which θ decreases is proportional to θ.
a By forming and solving a suitable differential equation, show that

$$
\theta=15 \mathrm{e}^{-k t},
$$

where k is a positive constant.
Given that after half an hour the temperature in the room is $20^{\circ} \mathrm{C}$,
b find the value of k.
The heater is set to turn on again if the temperature in the room falls to $15^{\circ} \mathrm{C}$.
c Find how long it takes before the heater is turned on.
$4 \quad$ a Find the values of the constants p, q and r such that

$$
\begin{equation*}
\sin ^{4} x \equiv p+q \cos 2 x+r \cos 4 x \tag{4}
\end{equation*}
$$

b Hence, evaluate

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{4} x \mathrm{~d} x
$$

giving your answer in terms of π.

5 a Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=x y^{3} \tag{4}
\end{equation*}
$$

b Given also that $y=\frac{1}{2}$ when $x=1$, find the particular solution of the differential equation, giving your answer in the form $y^{2}=\mathrm{f}(x)$.

6 a Show that, using the substitution $x=\mathrm{e}^{u}$,

$$
\begin{equation*}
\int \frac{2+\ln x}{x^{2}} \mathrm{~d} x=\int(2+u) \mathrm{e}^{-u} \mathrm{~d} u \tag{3}
\end{equation*}
$$

b Hence, or otherwise, evaluate

$$
\begin{equation*}
\int_{1}^{\mathrm{e}} \frac{2+\ln x}{x^{2}} \mathrm{~d} x . \tag{6}
\end{equation*}
$$

7

The diagram shows the curve with parametric equations

$$
x=\cos 2 t, \quad y=\tan t, \quad 0 \leq t<\frac{\pi}{2}
$$

The shaded region is bounded by the curve and the coordinate axes.
a Show that the area of the shaded region is given by

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} 4 \sin ^{2} t \mathrm{~d} t \tag{4}
\end{equation*}
$$

b Hence find the area of the shaded region, giving your answer in terms of π.
c Write down expressions in terms of $\cos 2 A$ for
i $\sin ^{2} A$,
ii $\cos ^{2} A$,
and hence find a cartesian equation for the curve in the form $y^{2}=\mathrm{f}(x)$.

8

$$
\mathrm{f}(x) \equiv \frac{6-2 x^{2}}{(x+1)^{2}(x+3)}
$$

a Find the values of the constants A, B and C such that

$$
\begin{equation*}
\mathrm{f}(x) \equiv \frac{A}{(x+1)^{2}}+\frac{B}{x+1}+\frac{C}{x+3} . \tag{4}
\end{equation*}
$$

The curve $y=\mathrm{f}(x)$ crosses the y-axis at the point P.
b Show that the tangent to the curve at P has the equation

$$
\begin{equation*}
14 x+3 y=6 \tag{5}
\end{equation*}
$$

c Evaluate

$$
\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x
$$

giving your answer in the form $a+b \ln 2+c \ln 3$ where a, b and c are integers.

